Liposomal Chemotherapeutics

Christian Celia, Pharm.D., Ph.D.

Department of Pharmacy, University of Chieti – Pescara, “G. d’Annunzio”

Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA

E-mail: c.celia@unich.it; Phone office: +39 0871 355 4711
ITEMS

✓ Introduction to Nanotherapeutics and Nanomedicines
✓ Lipid based Nanotherapeutics in Nanomedicines
✓ Conclusion
✓ Future Perspective
Introduction to Nanotherapeutics

Polymeric therapeutics

Water soluble polymers, either as a bioactive itself (A) or as an inert functional part of a multifaceted construct for improved drug, protein or gene delivery (B).

Size: <25 nm

Nanocomplexes

Colloidal systems with a complex structure that consist of a polynuclear iron (III)-hydroxide core surrounded by carbohydrate polymer coatings.

Size: 20–30 nm

Nanoemulsions

Oil nanodroplets dispersed within aqueous continuous phase suitable for entrapment of hydrophobic drugs.

Size: 20–200 nm

Polymeric micelles

Supramolecular aggregates composed of amphiphilic block copolymers that self-assemble into aqueous media; inner core typically serves as a container for hydrophobic drugs.

Size: 20–80 nm

Liposomes

Vesicles composed of one or more concentric bilayers of lipid molecules (entrapping hydrophobic drugs) enclosing one or more aqueous compartments (entrapping hydrophilic drugs)

Size: >20 nm

Hydrophobic drug

Hydrophilic drug

Phospholipid

PEG

Virosomes

Reconstituted virion-like lipid bilayer vesicle that contains integrated surface glycoproteins that are derived from viruses

Size: 20–150 nm

Lipid membrane

Virus surface glycoproteins

Antigen

Nanocrystals

Nanosopic crystal of a hydrophobic parent drug

Size: 50–1,000 nm

Polymeric nanoparticle

Solid nanoparticles that consist of natural or synthetic polymers

Size: 100–1,000 nm

Polymer

Hydrophobic drug

<table>
<thead>
<tr>
<th>Industrial perspective</th>
<th>Physician/pharmacist perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved utilization of costly (bio)pharmaceuticals</td>
<td>More effective and less toxic therapeutic interventions</td>
</tr>
<tr>
<td>(eg, low-dose formulation, improved drug solubility/stability, controlled drug release, improved pharmacokinetic profile, targeted drug delivery)</td>
<td>Patient-friendly drug product</td>
</tr>
<tr>
<td>Drug product reformulation by using innovative health technology</td>
<td>(eg, self-administered drug product)</td>
</tr>
<tr>
<td>(eg, expanded drug lifecycle, drug reintroduction)</td>
<td>Personalized therapy</td>
</tr>
<tr>
<td>Maximizing the return of R&D investments</td>
<td>Simplified therapeutic procedures</td>
</tr>
<tr>
<td></td>
<td>Providing targeted drug performance</td>
</tr>
<tr>
<td></td>
<td>Accelerating the healing process</td>
</tr>
<tr>
<td></td>
<td>Improved patient compliance/adherence</td>
</tr>
<tr>
<td></td>
<td>Improved medical/pharmaceutical care</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Health care system perspective</th>
<th>Patient perspective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rational prescribing</td>
<td>Reducing the frequency of dosage</td>
</tr>
<tr>
<td>Overall reduction in health care costs</td>
<td>Minimally invasive method of administration</td>
</tr>
<tr>
<td>(eg, by increasing the drug efficacy, reducing the length of in-patient care stay, reducing personal health care costs, and the effective treatment of expensive major diseases)</td>
<td>Improved therapeutic outcomes</td>
</tr>
<tr>
<td></td>
<td>Reducing adverse drug effects</td>
</tr>
<tr>
<td></td>
<td>Improved quality of life of patients</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Trade name</th>
<th>Company</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liposomal amphoteracin B</td>
<td>Abelcet</td>
<td>Enzon</td>
<td>Fungal infections</td>
</tr>
<tr>
<td>Liposomal amphoteracin B</td>
<td>Ambisome</td>
<td>Gilead Sciences</td>
<td>Fungal and protozoal infections</td>
</tr>
<tr>
<td>Liposomal cytarabine</td>
<td>Depocyt</td>
<td>Pacira (formerly SkyePharma)</td>
<td>Malignant lymphomatous meningitis</td>
</tr>
<tr>
<td>Liposomal daunorubicin</td>
<td>DaunoXome</td>
<td>Gilead Sciences</td>
<td>HIV-related Kaposi’s sarcoma</td>
</tr>
<tr>
<td>Liposomal doxorubicin</td>
<td>Myocet</td>
<td>Zeneus</td>
<td>Combination therapy with cyclophosphamide in metastatic breast cancer</td>
</tr>
<tr>
<td>Liposomal IRIV vaccine</td>
<td>Epaxal</td>
<td>Berna Biotech</td>
<td>Hepatitis A</td>
</tr>
<tr>
<td>Liposomal IRIV vaccine</td>
<td>Inflexal V</td>
<td>Berna Biotech</td>
<td>Influenza</td>
</tr>
<tr>
<td>Liposomal morphine</td>
<td>DepoDur</td>
<td>SkyePharma, Endo</td>
<td>Postsurgical analgesia</td>
</tr>
<tr>
<td>Liposomal verteporfin</td>
<td>Visudyne</td>
<td>Novartis</td>
<td>Age-related macular degeneration, pathologic myopia, ocular histoplasmosis</td>
</tr>
<tr>
<td>Liposome-PEG doxorubicin</td>
<td>Doxil/Caelyx</td>
<td>Ortho Biotech, Schering-Plough</td>
<td>HIV-related Kaposi’s sarcoma, metastatic breast cancer, metastatic ovarian cancer</td>
</tr>
<tr>
<td>Micellar estradiol</td>
<td>Estrasorb</td>
<td>Novavax</td>
<td>Menopausal therapy</td>
</tr>
</tbody>
</table>
Lipid based Nanotherapeutics in Nanomedicines

Anticancer Therapy

Delivery Vehicles
- Liposomes: Biodegradable, sensitive to pH, temperature sensitive
- Metals: Gold, Iron oxide
- Polymeric: Natural, biologically active

Stealth Coating
- PEG, Poloxamer, Dextran, Silica acid derivatives
- Zwitterionic phospholipids, Polyglycerols
- Polyacrylic polymer, Polyvinyl polymer

Antibody Conjugated
- Plectin-1 + magnetofluorescence
- HER2 + superparamagnetic iron oxide
- Her2 + iron oxide

Quantum dots
- T7
- RGD - PEG

Imaging Agents

Ligands
- Antibodies: HER2, EGFR, CD19
- Affibodies: HER2, RGD, CGDK

Gene Therapy
- TUSC/FUS1
- EPS3
- EGFR miRNA
- IL-12

Legend
- Delivery vehicle
- Stealth
- Targeting moiety
- pH and Temp. sensitive
- Chemotherapeutic
- Gene therapy
- Imaging agent

<table>
<thead>
<tr>
<th>Key parameters</th>
<th>Free Drug</th>
<th>Liposome A</th>
<th>Liposome B</th>
<th>Liposome C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total time (h)</td>
<td>4</td>
<td>>48</td>
<td>>48</td>
<td>>48</td>
</tr>
<tr>
<td>C_{max} (ng/ml)</td>
<td>11.3±1.3</td>
<td>112.1±8.3</td>
<td>48.7±3.4</td>
<td>267.5±16.3</td>
</tr>
<tr>
<td>T_{max} (h)</td>
<td>0.5</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AUC$_{0-48}$ (ng·ml$^{-1}$·h)</td>
<td>23.7±4.9</td>
<td>876.6±122.9</td>
<td>220.4±58.0</td>
<td>944.8±127.1</td>
</tr>
</tbody>
</table>

Table 1
Physicochemical characterization of BEO and BEO-BF loaded liposomes. Data is presented as mean ± standard deviation.

<table>
<thead>
<tr>
<th>Formulations</th>
<th>Average size (nm)</th>
<th>PDI</th>
<th>Zeta potential (mV)</th>
<th>Entrapment efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty-liposomes</td>
<td>177.91 ± 2.89</td>
<td>0.220 ± 0.089</td>
<td>-4.57 ± 1.76</td>
<td>-</td>
</tr>
<tr>
<td>BEO(^b)-liposomes</td>
<td>188.25 ± 2.19</td>
<td>0.230 ± 0.059</td>
<td>-2.95 ± 1.29</td>
<td>75.0 ± 2.32</td>
</tr>
<tr>
<td>BEO-BF-liposomes</td>
<td>185.14 ± 1.97</td>
<td>0.228 ± 0.062</td>
<td>-2.57 ± 1.38</td>
<td>77.0 ± 1.94</td>
</tr>
</tbody>
</table>

\(^a\) Polydispersity index.
\(^b\) Bergamot essential oil.
\(^c\) Bergamot essential oil bergaptene-free.
Table 2: Plasma pharmacokinetic parameters of GEM and its inactive metabolite, 2',2'-difluorodeoxyuridine, after a single intravenous administration in CB-17 SCID-mice.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>$t_{1/2}$ (h)</th>
<th>C_{max} (µg/ml)</th>
<th>T_{max} (h)</th>
<th>V_d (ml)</th>
<th>AUC (µg/ml h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free GEM</td>
<td>1.0 ± 0.12</td>
<td>0.55 ± 0.07</td>
<td>0.5 ± 0.1</td>
<td>181.81 ± 0.09</td>
<td>0.666 ± 0.034</td>
</tr>
<tr>
<td>L-GEM*</td>
<td>8.0 ± 0.26</td>
<td>0.51 ± 0.01</td>
<td>1.0 ± 0.1</td>
<td>444.44 ± 0.13</td>
<td>5.171 ± 0.029</td>
</tr>
<tr>
<td>Metabolite from GEM</td>
<td>4.0 ± 0.24</td>
<td>1.25 ± 0.05</td>
<td>0.5 ± 0.2</td>
<td>80.00 ± 0.20</td>
<td>10.260 ± 0.086</td>
</tr>
<tr>
<td>Metabolite from L-GEM*</td>
<td>10.0 ± 0.39</td>
<td>1.57 ± 0.08</td>
<td>2.0 ± 0.1</td>
<td>72.46 ± 0.11</td>
<td>23.302 ± 0.076</td>
</tr>
</tbody>
</table>

* All data of pharmacokinetic parameters have a statistical significance ANOVA $P < 0.001$ with respect to free GEM and metabolite from GEM.

a, panel a shows the body distribution of SLs after *in vivo* injection in liver and blood; b, panel b shows the body distribution of SSL(4)s after *in vivo* injection in liver and blood.

Nude SKID mice bearing MDA-MB-231 breast cancer bone metastasis cells treated by using Dox hydrochloride-loaded SSLs. The anticancer treatment is carried out for 5 weeks. Images are acquired per week. Animals are injected i.v. during the treatment. 5 animals per groups is used during the experiments. Key legends: A) PBS solution (control); B) empty SSLs; C) Doxorubicin hydrochloride; D) Doxorubicin hydrochloride-loaded SSLs.

Quantification of tumor development and body weight in Nude SKID mice bearing MDA-MB-231 breast cancer bone metastasis cells treated by using Dox hydrochloride-loaded SSLs. Key legends: (●) PBS buffer solution; (▼) Empty SSLs; (■) Doxorubicin hydrochloride; (◇) Doxorubicin hydrochloride-loaded SSLs. 5 animals per groups is used during the experiments.

Physicochemical Properties

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Size/nm</th>
<th>PDI</th>
<th>ζ/mV (-)</th>
<th>EE/%</th>
<th>LED/μg/mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Lip</td>
<td>106.2 ±1.1</td>
<td>0.093 ± 0.016</td>
<td>10.2 ± 0.6</td>
<td>62.2 ± 1.6</td>
<td>58.4 ± 3.5</td>
</tr>
<tr>
<td>E-Lip</td>
<td>114.7 ± 1.5</td>
<td>0.044 ± 0.028</td>
<td>10.7 ± 0.9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RE-Lip₁</td>
<td>116.6 ± 1.3</td>
<td>0.064 ± 0.016</td>
<td>11.8 ± 1.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RE-Lip₂</td>
<td>96.1 ± 0.6</td>
<td>0.158 ± 0.009</td>
<td>9.3 ± 1.1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Conclusion

✔ Liposomes can significantly enhance the anticancer efficiency of chemotherapeutics for the treatment of solid and blood-borne tumors.

✔ Liposomes can increase the circulation time, decrease side effects, enhance tumor accumulation and overcome drug resistance of chemotherapeutics.

✔ Liposomes improve pharmacokinetic and biopharmaceutical features of chemotherapeutics.

✔ Liposomes provide a customized chemotherapy in innovative Nanomedicine.

✔ Liposomes are therapeutic tools for chemotherapeutic treatment.
Future Perspective

✔ Many more liposomal chemotherapeutics will gain clinical approval in the near future.

✔ Overcome the potential toxicity arising from the presence of PEG on liposomal surface.

✔ Overcome the high production costs in comparison with conventional cytotoxic agents.

✔ Improve the number of Clinical Trails using liposomal chemotherapeutics.

✔ Customize Selective Liposomal Chemotherapeutics.
Research Staffs and Collaborators

University of Catanzaro “Magna Græcia”, Italy

Prof. Massimo Fresta
Prof. Donatella Paolino
Prof. Donato Cosco
Dr. Felisa Cilurzo
Dr. Maria Chiara Cristiano

The Methodist Hospital Research Institute, Houston, TX, USA

Prof. Mauro Ferrari
Prof. Paolo Decuzzi
Prof. Haifa Shen
Prof. Alessandro Grattoni
Prof. Rita Serda
Prof. Ennio Tasciotti
Dr. Aryal Santos
Dr. Yi Huang
Dr. Shyam Bansal
Dr. Silvia Ferrati
Dr. Dickson Kirui
Dr. Krishna Suri
Dr. Joy E Wolfram

University of Chieti-Pescara “G. d’Annunzio”, Italy

Prof. Luisa Di Marzio
Prof. Marcello Locatelli
Dr. Sara Esposito
Dr. Martina Di Francesco
Dr. Rosita Primavera
Research Staffs and Collaborators

Prof. Gaetano Giammona
Prof. Gennara Cavallaro
Prof. Mariano Licciardi

Prof. Oddone Schiavon
Prof. Gianfranco Pasut
Dr. Anna Mero

Prof. Maria Carafa
Prof. Carlotta Marianecchi
Dr. Federica Rinaldi